organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

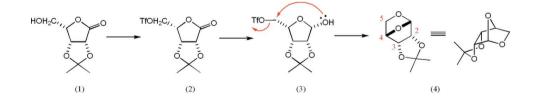
Michela Simone,^a* George W. J. Fleet^a and David J. Watkin^b

^aDepartment of Organic Chemistry, Chemical Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, England, and ^bDepartment of Chemical Crystallography, Chemical Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, England

Correspondence e-mail: michela_simone@yahoo.co.uk

Key indicators

Single-crystal X-ray study T = 150 K Mean σ (C–C) = 0.003 Å R factor = 0.031 wR factor = 0.031 Data-to-parameter ratio = 7.7


For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

1,5-Anhydro-2,3-O-isopropylidene-ι-lyxofuranose [(1*S*,4*S*,5*S*,6*R*)-5,6-O-isopropylidene-2,7-dioxabicyclo[2.2.1]heptane-5,6-diol]

The tricyclic title compound, $C_8H_{12}O_4$, was formed in the reduction by diisobutylaluminium hydride of a 5-*O*-trifluromethanesulfonyl lactone and is likely to be useful as a chiral intermediate for the synthesis of bioactive compounds. The absolute configuration was determined by the use of 2,3-*O*-isopropylidene-L-lyxono-1,4-lactone as the starting material.

Comment

Branched sugar lactones may be useful as versatile intermediates in the synthesis of novel branched biologically important molecules and biopolymeric materials (Asano et al., 2000; Ichikawa & Igarashi, 1995; Ichikawa et al., 1998; Soengas et al., 2005; Hotchkiss et al., 2004, 2006). The Ho crossed-aldol reaction (Ho, 1979, 1985) of lactols with formaldehyde is one of the most powerful strategies for the synthesis of these compounds. In the course of the synthesis of a branched sugar lactone by a Ho procedure (Simone et al., 2005), the trifluoromethanesulfonate, (2), derived from the 2,3-Oisopropylidene-L-lyxono-1,4-lactone, (1) (Simone et al., 2005), was treated with diisobutylaluminium hydride (DIBAL-H). A rationalization for the formation of the title compound, (4), is that initial reduction afforded the β -lyxose, (3), which spontaneously cyclized to (4) by S_N2 displacement of the trifluoromethanesulfonate. The value of such highly oxygenated bicyclic intermediates as (4) is well established (Cossy et al., 1995; Pechy et al., 1993), and the unexpected formation of (4) may provide another valuable chiron.

The structure of (4) has been determined by X-ray diffraction (Fig. 1), which showed that it is formed by a sixmembered ring fused to a five-membered ring (the acetonide protecting group). The five-membered ring adopts an envelope conformation. The six-membered ring is a $B_{2,5}$ -type conformationally constrained structure, due to the existence of the oxygen bridge linking the 1- and 4-positions.

Experimental

© 2007 International Union of Crystallography All rights reserved 1,5-Anhydro-2,3-O-isopropylidene-L-lyxofuranose, (4), was obtained in 28% yield upon overnight reduction of the trifluoromethaneReceived 14 December 2006 Accepted 19 January 2007 sulfonate (2) with DIBAL-H in tetrahydrofuran at low concentration (16 mg ml⁻¹). The title material, (4), isolated as a crystalline but volatile product, was recrystallized *via* solvent evaporation (ethyl acetate–cyclohexane) ($R_{\rm f}$ 0.57; m.p. 338–339 K). HRMS (FI⁺), found: 172.0732 [M]⁺; C₈H₁₂O₄ requires: 172.0736; [α]²¹_D 106.8 (*c*, 0.72 in methanol); IR (thin film, $\nu_{\rm max}$, cm⁻¹): 2992, 2955, 2906 (*s*, C–H), 1378 (–O–CO–CH), 1291 (C–O); ¹H NMR (CDCl₃, 400 MHz): δ 1.34, 1.60 [2 × 3H, 2 × *s*, C(CH₃)₂], 3.55 (1H, *ddd*, $J_{\rm H5,H5'}$ = 6.6 Hz, $J_{\rm H5,H4}$ = 3.5 Hz, $J_{\rm H5,H3}$ = 1.3 Hz, H5), 4.31 (1H, *a*–*d*, *J* = 6.8 Hz, H5'), 4.45 (1H, *a*–*dd*, *J* = 8.2 and 2.3 Hz, H2), 4.64 (1H, *dd*, $J_{\rm H3,H2}$ = 8.1 Hz, $J_{\rm H3,H4}$ = 4.6 Hz, H3), 4.72–4.77 (1H, *m*, H4), 5.45 (1H, *d*, $J_{\rm H1,H2}$ = 2.2 Hz, H1); ¹³C NMR (CDCl₃, 100 MHz): δ 25.6, 26.1 [C(CH₃)₂], 63.7 (C5), 76.5 (C3), 78.8 (C4), 81.6 (C2), 100.1 (C1), 119.7 [C(CH₃)₂].

Crystal data

 $\begin{array}{l} C_8 H_{12} O_4 \\ M_r = 172.18 \\ Orthorhombic, \ P2_1 2_1 2_1 \\ a = 8.1279 \ (3) \ \mathring{A} \\ b = 9.4993 \ (4) \ \mathring{A} \\ c = 10.8126 \ (4) \ \mathring{A} \\ V = 834.83 \ (6) \ \mathring{A}^3 \end{array}$

Z = 4 $D_x = 1.370 \text{ Mg m}^{-3}$ Mo K\alpha radiation $\mu = 0.11 \text{ mm}^{-1}$ T = 150 KFragment, colourless $0.38 \times 0.32 \times 0.14 \text{ mm}$

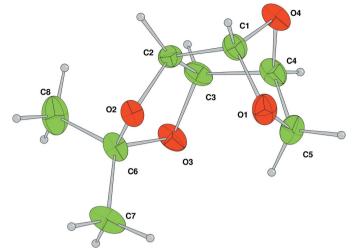
Data collection

Nonius KappaCCD area-detector diffractometer ω scans Absorption correction: multi-scan (*DENZO* and *SCALEPACK*; Otwinowski & Minor, 1997) $T_{min} = 0.96, T_{max} = 0.98$

Refinement

Refinement on F $R[F^2 > 2\sigma(F^2)] = 0.031$ $wR(F^2) = 0.031$ S = 1.15834 reflections 109 parameters H-atom parameters constrained $w = [1 - (F_o - F_c)^2/36\sigma^2(F)]^2/$ $[0.275T_0(x) + 0.0396T_1(x) +$ $R_{\rm int} = 0.037$ $\theta_{\rm max} = 27.4^{\circ}$

5825 measured reflections


1111 independent reflections

834 reflections with $I > 3\sigma(I)$

 $\begin{array}{l} 0.0219T_2(x)] \text{ where } T_i \text{ are } \\ \text{Chebychev polynomials and } \\ x = F_c/F_{\max} \mbox{ (Prince, 1982; } \\ \text{Watkin, 1994)} \\ (\Delta/\sigma)_{\max} = 0.005 \\ \Delta\rho_{\max} = 0.14 \mbox{ e } \mbox{ Å}^{-3} \\ \Delta\rho_{\min} = -0.14 \mbox{ e } \mbox{ Å}^{-3} \end{array}$

A large single-crystal was cut to give a small fragment. This was mounted on a glass fibre using perfluoropolyether oil and cooled rapidly to 150 K in a stream of cold N₂ using an Oxford Cryosystems CRYOSTREAM unit. H atoms were positioned geometrically after each cycle of refinement, with C-H = 1.00 Å and $U_{iso}(H) =$ 1.2 $U_{eq}(C)$.

Data collection: *COLLECT* (Nonius, 2000); cell refinement: *DENZO* (Otwinowski & Minor, 1997); data reduction: *DENZO* and *SCALEPACK* (Otwinowski & Minor, 1997); program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1994); program(s) used to refine structure: *CRYSTALS* (Betteridge *et al.*, 2003); molecular graphics: *CAMERON* (Watkin *et al.*, 1996); software used to prepare material for publication: *CRYSTALS*.

Figure 1

The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitary radius.

Financial support to MS provided through the European Community's Human Potential Programme under contract No. HPRN-CT-2002–00173 is gratefully acknowledged.

References

- Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
- Asano, N., Nash, R. J., Molyneux, R. J. & Fleet, G. W. J. (2000). *Tetrahedron Asymmetry*, **11**, 1645–1680.
- Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.
- Cossy, J., Ranaivosata, J. L., Bellosta, V., Ancerewicz, J., Ferritto, R. & Vogel, P. (1995). J. Org. Chem. 60, 8351–8359.
- Ho, P.-T. (1979). Can. J. Chem. 57, 381-381.
- Ho, P.-T. (1985). Can. J. Chem. 63, 2221-2224.
- Hotchkiss, D. J., Jenkinson, S. F., Storer, R., Heinz, T. & Fleet, G. W. J. (2006). *Tetrahedron Lett.* **47**, 315–318.
- Hotchkiss, D., Soengas, R., Simone, M. I., van Ameijde, J., Hunter, S., Cowley, A. R. & Fleet, G. W. J. (2004). *Tetrahedron Lett.* **45**, 9461–9464.
- Ichikawa, Y. & Igarashi, Y. (1995). Tetrahedron Lett. 36, 4585-4586.
- Ichikawa, Y., Igarashi, Y., Ichikawa, M. & Suhara, Y. (1998). J. Am. Chem. Soc. **120**, 3007–3018.
- Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Pechy, P., Gasparini, F. & Vogel, P. (1993). Synlett, pp. 676-678.
- Prince, E. (1982). Mathematical Techniques in Crystallography and Materials Science. New York: Springer-Verlag.
- Simone, M. I., Soengas, R., Newton, C. R., Watkin, D. J. & Fleet, G. W. J. (2005). *Tetrahedron Lett.* 46, 5761–5765.
- Soengas, R., Izumori, K., Simone, M. I., Watkin, D. J., Skytte, U. P., Soetaert, W. & Fleet, G. W. J. (2005). *Tetrahedron Lett.* 46, 5755–5759.
- Watkin, D. (1994). Acta Cryst. A50, 411-437.
- Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.